

SeeMe in a nutshell – the semi-structured, socio-

technical Modeling Method

Thomas Herrmann

This introduction explains the basis concepts of the modeling notation
SeeMe (semi-structured, socio-technical Modeling Method). We as-
sume that most of the readers know other types of diagrammatic mo-
deling languages, and are now interested in a method which is espe-
cially designed for representing socio-technical work processes and
structures. The following description is mainly focused on the syntacti-
cal and semantical aspects of the modeling notation SeeMe. Only the
last section provides guidelines about how diagrams can be devel-
oped.
SeeMe was developed in 1997 after it had revealed that the available
diagrammatic modeling methods were not feasible for socio-technical
systems and for the purpose of smooth communication processes
about socio-technical solutions. An important difference of SeeMe in
comparison with other methods was the handling of vagueness, which
was emphasized in the first publications on SeeMe [Herrmann&Loser,
1999; Herrmann et al., 1999]. Further publications gave reports about
the practical usage and usefulness of this method [Herrmann et al.
2000; Herrmann et al. 2004a]. It turns out that SeeMe should be used
in the context of a deliberately organized series of workshops includ-
ing facilitated communication processes which we call Socio-technical
walkthrough – STWT [Herrmann et al., 2004b]. To find collections of
SeeMe-Models the following literature can be exploited: Loser, 2005;
Kunau, 2006; Stefanides 2006.

1 The Background of SeeMe: Modeling socio-technical

systems
If individual software development is projected for a company or if
existing software has to be configured and introduced, several as-
pects and perspectives have to be taken into account to document the
concept of integrating the software into an organization. Typical as-
pects of documentation are: Features of the technical components
and their interplay; conditions, events or exceptions; resources; roles,
actors and their competencies and skills; work procedures; communi-
cation and cooperation, human-computer interaction, power relations
and interests etc. Typical stakeholders, whose perspectives should
be represented, are: management, software-engineer, workers, pro-
ject-manager, user advocates, or citizens. A socio-technical modeling
method must be able to handle these aspects and perspectives, al-
though not every diagram needs to mirror all of them. The diagrams
should be a collective resource which can be used by the stake-
holders to express and to document their points of view.
The purpose of SeeMe is to support the early phases of developing
concepts for socio-technical solutions and to document them. The
socio-technical approach is especially appropriate if the interactions
between people are supported and shaped by ICT in the case of co-
operative work settings or processes such as workflow management,
knowledge management, cooperative design etc. Nearly every kind of
cooperative work which is coordinated with a shared database (e.g.

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 1 -

between truck drivers and dispatchers), can be considered as a socio-
technical system.
We suggest an underlying scenario where the relevant stakeholders
“come together” (e.g. in a series of workshops) to contribute their re-
quirements for a socio-technical solution. These contributions may
include a variety of the aspects listed above which have to become
visible in the documentation. Our approach is based on communica-
tion theory which suggests that communicators do only make explicit
what is not already obvious by their context [Kienle & Herrmann,
2003] or common ground. Therefore a modeling notation which repre-
sents a rich variety of aspects must allow the modeler to focus on the
essential aspects. An “early-phases” notation must not enforce the
depicting of all details as they are needed for context-free tasks of
programming, configuration or formulation of regulations. It must be
possible to represent incomplete or uncertain information and to indi-
cate those aspects of a model which are only incompletely specified.
If misunderstandings are observed with respect to this incompleteness
it can be gradually reduced by making the diagrams more explicit and
formal.

Therefore, for the early phases of designing socio-technical systems
or processes it is reasonable to use a modeling notation to create
diagrams which
• visualize the complex interdependencies between people, between

human and computers, and between technical components
• do not focus on selected views such as processes, functions, tasks

of objects but allows modelers to combine these views,
• can integrate overview sketches of the planned solution with the

representation of rich details, if a contributor wants to introduce
them. Subsequently it is not necessary to switch between different
diagrams to see varying degrees of details.

• integrate formal and informal structures as well as technical and
social aspects

• handle incompleteness and vagueness (e.g. if it is not clear which
sub-activities are part of a task or under which conditions these
sub-activities are carried out.)

• and represent conventions, interests, and multiple perspectives.

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 2 -

2 The basic elements of SeeMe

SeeMe helps to describe the interaction between people and between
humans and physical or technical objects of the world. Therefore,
SeeMe differentiates between three basic elements:

pro-
gram-
mer

pro-
gram-
ming

pro-
gram

Role:

activity:

entity:

• Roles which represent a set of rights and duties as they can be
assigned to persons, teams, or organizations. Eventually, the char-
acteristics of a role are based on the expectations of other roles.
These kind of reciprocal relationships are typical for social systems
– roles are a means to introduce social aspects into the models.

• Activities which are (usually) carried out by roles and stand for the
dynamic aspects which represent change, such as completing of
tasks, functions etc.

• Entities representing passive phenomena; e.g. resources being
used or modified by activities, such as documents, tools, programs,
items of the physical world. They can represent containers (e.g. a
box, a warehouse) or ephemeral phenomena (e.g. an utterance).

For the layout of a socio-technical diagram we recommend that roles
are in the top, activities in the middle and entities in the bottom of
a diagram. However, this is not a strict syntactical or semantical rule,
and it can be reasonable to prefer another way of ordering the ele-
ments. Basic elements are abstract symbols (on the level of classes)
and do not represent concrete persons or actions, since SeeMe is
used for concepts and plans which represent not only one but a vari-
ety of concrete cases. There are multiple ways how a basic element
can be instantiated.
 Documenting

knowledge
eliciting Elements can be embedded into other elements; we say “a sub-

element is part of a super-element”. Sub-roles can represent parts of
the organizational structure of a more complex role, e.g. a depart-
ment, sub-activities may describe the steps of a task (like document-
ing knowledge); entities can contain their components as sub-
entities (such as a table consists of rows and columns). Sub-
elements can contain further sub-elements.

structuring

updating

table
line

rows

Sub-elements can be of another type than their super-elements: A
role may contain an entity which – for instance – represents its intel-
lectual capital or its competence (see the expert example). An activ-
ity may include the depiction of tools which are exclusively assigned to
it. If an element has its main relevance for only one certain other ele-
ment, it is recommendable to embed it into this element to denote a
kind of encapsulation.

expert

Knowledge
about ex-
ceptions

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 3 -

We want to differentiate whether a super-element is completely de-
scribed by its sub-elements or only partially. Incompleteness is indi-
cated by a semi-circle which we metaphorically call “mouse hole”. It is
empty if the incompleteness is intentionally; three dots indicate that
we do not know enough to complete the specification, and that further
research is required. A question mark indicates doubts about the cor-
rectness of the used sub-elements. If an element includes “incom-
pleteness-indicators”, it is only partially specified.

text
headline

paragraph

text
introduction

conclusion

…
 text
 headline

paragraph
word

?
A mouse hole does only indicate that a sub-element of the same type
as the super-element may be missing – e.g. a step of a task. To ex-
press that one or more sub-elements of another type are not speci-
fied, an unnamed sub-element of this other type is needed. The fig.
about the role team expresses with the mouse hole that more sub-
roles than the leader are relevant for the team. The mouse hole is
exclusively referring to unspecified sub-roles, but not to other types of
unspecified elements, such as activities or entities. However, we
might want to express that also entities are needed to specify the
team and that they should be a subject of further investigation; there-
fore, an additional, unnamed entity with three dots should be inserted.
This entity is not referred to by the mouse hole.

leader

Team

…

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 4 -

3 Relations between basic elements
SeeMe offers nine standard relations depending on the types of ele-
ments being connected and on the relation’s direction. Relations are
depicted with directed arcs. They have a starting- and an ending-point
which are anchored in basic elements. The “reading-direction” mirrors
the direction of the arcs in the following definitions:

pro-
grammer

user

• The role (programmer) carries out [1] the activity (program-
ming); programming

Computer User
interface

21

• the activity influences [2] the role (user); 43 • an entity (computer) is used by [3] the activity,
• which produces or modifies [4] an entity (interface).
While modifying (from activity to entity) represents a technical, deter-
ministical relationship, influencing (from activity to role) indicates a
contingent relationship [cf. Herrmann et al., 2004a]. Activities such as
teaching, communicating, advising etc. can have an impact on roles,
but they can not determine how the roles change their characteristics
– therefore we use the term influencing to describe this relation
Elements of the same type can be related to each other:
• A role (programmer) can have expectations towards [5] another

role (user) – the content of the expectation can be expressed with
an attribute (cf. section 6, description-on-relation); 5 pro-

gram• an activity is followed by [6] another one; user

6

7

mer

pro-
gram-
ming

Com-
puter

User
inter-
face

• and an entity can belong to [7] another one. Belonging to is a very
abstract term which covers more concrete relationships such as
that one entity is the pre-requisite of another one (like computer
user interface or original copy). using

Furthermore,
• a role can be described by [8] an entity (CV, curriculum vi-
tae) to which the arrow points; this relation is relevant to express
privacy issues; for instance, it can be used to indicate all kinds of
traces which are left by a user in a computer system.

• An entity (credit card) points to a role with an arc, if this entity
is possessed by [9] the role. This relation can especially be used
to express access rights. (Attention: this relation does never mean
that the entity triggers the behavior of a role, this needs always an
activity).

citizen

98
Credit
card CV

As the examples with the relations of type [8] and [9] show, a relation
does not need to be presented by a straight line. The arcs contain
waypoints where they change their direction. It should be noticed that
relations can connect an element with itself and they can maximally
connect two elements – the waypoints must never be used to connect
three or more elements.
It is possible to use double arrows e.g. if two activities are alternating
or if roles have expectations towards each other. trainer trainee

learningteaching

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 5 -

leader

Team Relations can be connected to super-elements or to one of its sub-
elements (that means crossing the border of the super-element). If a
relation is pointing to a super-element, it is also referring to all of its
sub-elements: while the team is responsible for the whole runtime of
the project, only the team leader can delegate tasks.

Running a
project

Delegating
tasks

leader

Team

Running a
project

Delegating
tasks

updating

database

Relations can be incomplete: If it is not clear whether a relation
should be connected with the whole super-element or only with its
sub-elements (and with which of them), the relation crosses the
super-element (team) and is not connected with a distinctive sub-ele-
ment. In the example, we can express with the upper diagram that the
team leader delegates tasks, while the lower diagram ex-
presses that it is unclear which sub-roles of the team
can be in charge with delegating tasks. This is a
way to depict that it is not exactly clear who is in charge
with the sub-activity delegating tasks.

updating

database

All types of relations can be used in this manner, e.g.
the type “modification” in the example updating a
data base. While in the upper case the whole data-
base is updated, the lower case shows that the data-
base is only partially updated.

Delegating
tasks

Carrying
out tasks

Exception
handling

meeting

Running a project

leader
Team

initiating a
project

There are further kinds of incompleteness: a relation needs not to be
directed by an arrow head if its direction is unknown or can not be
identified (e.g. between the activity designing and the entity dia-
gram).

designing

diagram

Relations can be left out, e.g. between sub-activities if
it is not clear in which sequence they occur. While the
sequence between delegating and carrying out
is clear, meeting and exception handling should
not be brought in a pre-defined sequence. An arrow can
also start or end in an undefined space if the element to
which it is anchored is unknown or not represented in
the diagram – in the case of the example, it is not clear
how the reaction on exception handling looks like.

Meta-relations (zig-zag-arrow) help to express that a basic element is
involved in influencing or modifying an element’s structure, although
the structure is part of the diagram. Since we model dynamic proc-
esses, every element has dynamic characteristics which can be influ-
enced or modified by the activities in the diagram, and it has charac-
teristics which usually remain stable when the process is executed.
However it may happen that we have to indicate that even the struc-
tures, which are underlying the model, might not be stable but can be
a subject of change – in this case a meta-relation is appropriate. This
can be illustrated by a little story: Imagine an element (e.g. the role
team) had only been partially specified during a workshop. After-
wards, the modeler tries to completely specify the role with a set of
sub-roles, although he had been recommended not to do so. As fore-
seen, in the next workshop the participants can bring an example that
the activity (initiating the project) can modify this role in a
way that the modeler’s proposed set of sub-roles is not appropriate

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 6 -

and should be remodeled after the activity was instantiated. However,
re-modeling is not really reasonable, since the future might reveal
situations where the role has again to be remodeled in another way.
The conclusion of this story that it is reasonable to keep the role in-
completely specified so that it is open for all kinds of variants, and to
use the meta-relation to express that there is an activity which has the
function to specify the role with sub-roles which comply with the
team’s task. Therefore, incompleteness and meta-relations are
closely related. They can be applied between all types of basic ele-
ments. However, they are not often used from the viewpoint of our
practical research.

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 7 -

4 Connected relations

Software
company

specifying software

Cus-
tomer

diagram scenario

∧

x

∧ AND:

XOR:

documentation

test data

If two or more relations are assigned to the same element
with their starting- or end-points, the question is, how the
interdependency between them can be described. These
kinds of dependencies are expressed with connectors.
We can differentiate between two main cases: The AND-
Connector should be used, if all of the relations have
always to be instantiated together (in the example, the
software company as well as the customer have to
work on the software specification). The XOR-
connector expresses that exactly one of the connected
relations can be instantiated, both relations together are
not possible (either diagrams or scenarios are used for
the specification). With respect to the direction of the
relations, a connector can lead to a joining or to a splitting
of the relations (splitting is given in the example when the
software-specification can produce a documentation as
well as a set of test data). Beyond these examples, also more than
two relations can be connected (see next example with diagram,
scenario and story).

Further types of connectors are the OR-connector which
expresses that either one, a subset or all of the connected
relations can be instantiated (the revised example shows
that it is possible that a scenario AND a diagram are
used, and also a story) The OPTIONAL-connector
expresses that one certain relation (which goes through
the connector) is mandatory while the other one is optional
(while the activity specifying software must produce
a documentation, it is optional whether a set of test
data is produced.)

specifying software

∨

diagram scenario

O
documentation

test data

OR:

 Optional:

story

ordering a book The logical type of a connector can be left unspecified, if

its meaning is clear by the context of a diagram or if we do
not want to be more precise. In the example it remains
intentionally undefined whether both or only one of the
entities telephone and e-mail must be used or can be
used for ordering a book. Such an empty connector
can also be left out: if two or more relations of the same
type are directly connected with an element, this repre-
sents a short cut for a diagram section which uses an un-
specified connector. However, the empty connector
should be used when it helps to avoid the drawing of sev-
eral parallel relation lines, or if it will possibly be specified
or completed with vagueness indicators: If we want to
indicate that further research and decision making is re-
quired to specify the connector, we should fill in three dots,
as in the example.

telephone e-mail

Unspe-
cified:

Can be replaced by:
ordering a book

telephone e-mail

specifying software

…

documentation

test data

 Needs further
specifi-
cation:

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 8 -

5 Modifiers: Conditions and Events

Checking
on quality programming delivering

x

programming

delivering

 testing

O
< 2 break-
downs in

10k cases

protoyping is intended

If a connector requires an OR-connection, the question arises under
which condition which relation can be instantiated. In many case,
these conditions can be clearly derived from the context (as well as
the type of connectors is implicitly clear). In the example it is assumed
that the programming is continued if the quality check is nega-
tive while delivering is instan-
tiated in the positive case. If the
contextual specification is not
clear enough for the relevant
stakeholders, we annotate so called modifiers as green hexagons to
the relations as illustrated in the next example. Note: Relation arcs do
never end or start at modifiers but go invisibly through them. This is
reasonable because the type of the relation is defined by the types of
the basis elements being connected (the connection between a basic-
element and a modifier does not
specify a new type of relation).
The modifiers contain the condi-
tions or events which are as-
signed to the instantiation of a
relation. The example illustrates
that the software is only deliv-
ered if there are less than 2 breakdowns in 10.000 cases,
otherwise the programming has to be continued – however this in-
complete software can yet be optionally delivered to use it as a proto-
type, if prototyping is intended. It should be noted, that testing
has not to be completed when the programming goes on. (The se-
mantic implications of modifiers can be very complex since it may
happen that an activity of a larger process model can not be instanti-
ated because of a modifier which is depicted in an “earlier” phase of
the process.)

programming

testing
x

programming

tester 1 2

Test: less than 2 break-
downs in 10k cases?

The question may arise who decides (and when) whether a condi-
tion is fulfilled or not. This decision is usually assigned to the activity
(and the role carrying out this activity) which is connected to the modi-
fied relations. If this assignment
is contextually unclear, the con-
nector can be embedded into
the activity where the decision
is made (case 1). Another way
to make the place of the deci-
sion clear, is to formulate a
question within an activity and
to add modifiers with YES or NO – in this case we have again the
construction which abbreviates the usage of an empty connector (cf.
the example with ordering a book), and the type of the connector
(XOR) is clear by the context and needs not to be depicted (Case 2).
A modeler would use case 1 if the conditions can not be clearly speci-
fied as it is the case with YES vs. NO. In contrast, case 2 is preferred if
we do not want to confront the recipients of the diagrams with the
logical complexity of connectors – it is an advantage of SeeMe that
connectors can be completely avoided in the early phases of getting
to know these modeling method.

no

yes

In SeeMe, modifiers can not only be annotated to relations but
also to all kinds of basic elements. This is helpful if the modification
has nothing to do with any relations. The example shows that test
data is always used if they are available, but they are not always
available (only if provided by the customer). This is helpful, if
the model is not so complete that it documents the production or the

testing

test data
provided

by the
customer

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 9 -

pre-requisites of the element where a modifier is annotated (e.g. test
data).
Modifiers can also be incomplete: they can be empty if we only
know that the instantiation of an element or relation depends on a
condition but the condition is unknown or contextual available. Three
dots indicate, that the condition has possibly to be specified later, a
question mark signals doubts whether the usage of a condition is ap-
propriate. We can also add a mouse hole (empty or with ”…” or “?”) to
indicate that the specification of the condition is incomplete. The ex-
ample depicts that we do not know under which condition the test
data is available and that we have to specify further criteria under
which it is used (beside the fact that it includes more than 1000
items and that the data is younger than a year).

testing

test data

> 1000 test items
& < 2 years …

SeeMe offers also modifiers as super-elements which can contain a
web of conditions and connectors as sub-elements. From the view-
point of our practical research experience, these super-modifiers are
only seldom needed. They can be useful to collect criteria and condi-
tions during a discussion.

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 10 -

6 Attributes and additional specifications of relations
The elements of a modeling notation such as SeeMe have to be com-
pleted with text and numbers. It is possible to add attributes to the
elements. An attribute has usually a name followed by a colon and
one or more values, e.g. “date of deletion: 1.1.2008; dates
of update: {1.4.2007, 1.7.2007, 1.10.2007}. In the ex-
ample, the words “date of” are left out in the attributes’ names, since it
is clear by the type of values what is meant. Basic elements have
usually a name which is also an attribute; the name-attribute of the
example is: “personal data” – here, the prefix name is left out.
Typical useful attributes are: duration of an activity; type of media
used for communication; values of contracts; entry-fields of a form;
characteristics of a role, such as a formal qualification etc.

Personal data
Deletion: 1.1.2008;
Updating: {1.4.2007,
1.7.2007, 1.10.2007}

The possibility to be incomplete can also be applied to attributes.
Mostly the incompleteness is compensated by the context. Names of
attributes can be left out. The name of the attribute name, for instance,
can be omitted since it is obvious which text is used as a name. Type
(such as role, activity, entity) is also an attribute which is assigned to
every element but is not made explicit because it is clearly indicated
by the geometrical shape of the elements. The example shows an
element with completely specified standard attributes (name: per-
sonal data; type: entity).

Name: Personal
data
Type: Entity

Quality man-
agement

Type:{role,
activity}

Animal
Type: living
organism

Shape of a Meta-
basic-elementThe attribute type can also be used, if an element of a special kind

(such as living organism) has to be modeled which is not part of the
set of basic-element-types. In this case, a so called meta-basic-
element is used and specified with a certain type, such as “type:
living organism”. This construction can also be used, if an ele-
ment’s type is unclear (e.g. quality management which may be a
role as well as an activity). Meta-basic-elements are abstract,
generalized representations of the basic-elements as they were intro-
duced in section 1. This Meta-basic-element helps modelers in excep-
tional situations where they want to vary the set of pre-specified basic
elements.

Personal data
Deletion: (…)
Updating: {1.4.2007 (?),
1.7.2007, ()}
Recipients:

To indicate incompleteness of the textual attributes, parenthe-
ses are used instead of semi-circles: “()” represents an empty
mouse hole; (…); (?). The parentheses are related to the round
shape of the mouse hole; it is also possible to use angle brack-
ets “<,>” to express conditions. The example means: the date
of deletion has still to be specified; updating at the
1.4.2007 may be incorrect; further updating after the 1.7. might
happen, but we do not want to specify the date; the value for recipi-
ents is also unspecified.
Names and types as well as attributes can also be annotated to
relations. For this purpose, we use grey rectangles which we call
description-on-relation. Names (which can be represented by
a number) are helpful to refer to the relation, e.g. in additional
textual descriptions (beside the diagram). Usually it is clear by
the context, whether a type or name is added to a relation; oth-
erwise type or name have to be explicitly depicted. The example
introduces special types of relations such as initiating or
terminating an activity or role exchange. Rel1 is a name
which can be used as reference in an extra text to explain how
and why the repetition of communication takes place.

Role
exchange

Communication
Duration:<1h,
Media: {FtF, Phone, Chat}

initiating

A B

termi-
nating

Rel1

Furthermore, we can use names of relations in conditions (a
condition with the name of a relation is considered as fulfilled, if the
relation has been instantiated; this enables us to define conditions

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 11 -

which refer to previous events in a process). Typing of relations is
helpful if the standard meanings of relations are not sufficient, e.g. if
persons can exchange roles etc. Especially, aggregation and gen-
eralization, as used in class diagrams, can be important non-standard
types. Since they are used for object oriented modeling, the special
graphical representations as they are used for aggregation and gen-
eralization in UML-class diagrams can also be used in SeeMe.
 Special attribute are cardinalities as they are known
from entity relationship modeling – they can be anno-
tated to elements (which is helpful for sub-elements) and
to the start or end of a relation. The examples expresses
that a year has 12 months, which consists of 28 to
31 calendar days and that every day belongs to
exactly one month.

year
Calen-

der
day

month
1 28..31
12

Another special attribute indicates the probability with which a certain
condition is fulfilled; they can be added to the modifiers (in the ex-
ample in section 7, the probability is 2% that an exception han-
dling takes place).
Since relations indicate the dynamics of a model, we
offer the additional possibility to assign basic-
elements to relations which “help” (or are needed) to
instantiate them. They are connected via an arc and a
semi-circle to the relation. We assign roles which are
interested in the relation, and activities and entities
which are needed to instantiate the relation, as shown
in the example. This construction usually represents
side aspects which help to understand the modeled
phenomena but are not of central interest.

assis-
tant

Copy
ma-

chine

archi-
vist copying

copy original

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 12 -

7 SeeMe’s little helpers
SeeMe-modelers can use elements which help to make the diagrams
easier to comprehend. Not all of these helpers are part of the formal
specification of SeeMe.
Segment lines are part of the formal notation. They separate super-
elements into segments which help to sort sub-elements or attributes
according to different perspectives (in the example we differentiate
between knowledge management and task management). The
top segment usually contains the name of the segmented super-
element as well as attributes which apply to the whole segment (i.e. to
every of its segments, such as average time per reclamation).
Relations which point into
the top-segment are re-
lated to the whole super-
element (as the roles in
our example); if they point
into another segment they
are exclusively assigned
to it (as workflow man-
agement system and
document management
system). Names can be
assigned to segments by
using attributes. Vertical
segment-lines in modifi-
ers help to differentiate
between conditions (on
the left side) and prob-
abilities (on the right) –
see the example of ex-
ception handling).
Other Elements can pri-
marily be used with the
SeeMe-editor and are not
a formal part of the
SeeMe-notation. The
SeeMe-editor is a soft-
ware-based tool which is
especially designed to
support the drawing as
well as the presentation
of SeeMe-diagrams.
Switching between draw-
ing and presenting the
diagrams can take place
seamlessly.
Typical examples of the editor’s features are dividers. These are
thick, usually grey lines which divide a diagram into different areas to
help the recipient of a diagram to recognize the different aspects of
content or topics of a larger model. E.g. the start of phases of a proc-
ess or a project can be indicated with these dividers. Dividers can be
freely used since they are not a part of the formal notation; therefore,
they should not be confused with segment lines. For instance, it is
possible to draw “swim lanes” with them as they are used within some
modeling methods to differentiate between role, activities and tools.
The SeeMe-editor offers specific attributes which represent a hyper-
link. These hyperlinks can be used with the editor to start an applica-

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 13 -

tion by clicking on them. With this feature, the displaying of pictures,
other SeeMe-diagrams, webpages, screenshots of prototypes etc. can
be started. The pictures or additional documents help to illustrate the
abstract element containing the hyperlink as shown in the example
with documents.
Furthermore, it is possible to add free text to diagrams, which is not
connected with certain elements. This text can be used to add a
headline to a diagram or to make explanations which refer to the
whole diagram. Text can also be added to geometrical dividers, e.g. to
indicate their meaning, since it is not formally specified (such as ini-
tial phase and performing phase). Special text can also be
connected to basic-elements or relations to serve as a comment
which is exclusively assigned to the annotated element – this text
appears as bubble (such as reasons for exceptions are all
different).

The SeeMe editor offers an-
other useful feature which helps
to focus onto the essential ele-
ments which are under discus-
sion in a communicative proc-
ess. For this purpose, basic-
sub-elements and/or relations
can be temporally hidden and
be shown again if they are
needed. This concept of hiding
and showing is outlined in
Herrmann, 1998. If a sub-
element has been made disap-
pearing, this is indicated by a
grey mouse hole, a hidden rela-
tion appears as a grey, thick-
ened residue of the arc. The
example below shows how the
diagram managing the rec-
lamation process looks like
if all elements are hidden which
do not belong to the activities of
the phase of initiating.
The hidden elements can be
shown again by clicking on the
grey mouse holes or residues.

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 14 -

8 Guidelines for modeling with SeeMe
The creation of a model of a socio-technical work process may con-
sist of the following steps:
• It can start with the collection of one type of relevant basic-

elements: roles, activities, or entities. If there is no clear preference,
we recommend starting with activities.

• The next question is, whether there are sequences between the
collected activities – for sub-sets of non-sequential activities it might
be reasonable to assign them to a super-element as sub-elements.

• Next step is to ask which entities are produced / modified or used.
The usage of entities can especially focus on the support by infor-
mation and communication technology.

• Another type of questions refers to the roles which carry out the
activities or are influenced by them (the influence-relation is not of-
ten used; if a role R reacts on an activity A with an own activity, the
influence of A on R is implicitly clear).

• Every entity has to be created somehow and/or be used some-
where – and it has to be asked whether this should be modeled or
not.

• The collecting of roles and entities may give reason to integrate
additional activities or sub-activities into the model.

voting

rejecting

accepting

commenting
start end

programming testing selling

Note that all the sub-activities of an activity
must be carried out, if an incoming arc ends
at its border instead of crossing into the activ-
ity. In the case of crossing, only one or some
sub-activities are to be carried out (in the
voting example, an incoming arc which ends
at the border is nonsense, since rejecting
and accepting are never performed to-
gether, while commenting can be added to
each of these votes. If a leaving arc crosses
the border, this activity will stay active al-
though the next one is already started. Start-
ing a leaving arc at the border of an activity means that it is com-
pleted. Programming might go on after testing has started, but
the software should not be sold before testing is completed. Proc-
ess diagrams can start and/or end with relations instead with activities
– these relations can be indicated with start- or end-modifiers.
Be aware that whenever somebody or something is influenced / modi-
fied, an activity is needed, and the traces of activities, which are ob-
servable, are presented with entities – since entities are abstract clas-
ses they can even represent ephemeral phenomena such as verbal
utterances, the ringing of a mobile phone etc.
(that means that entities do not always repre-
sent persistent objects).
When the diagram develops step by step it
should sometimes be aesthetically improved.
Basic elements of the same relevance or em-
bedding level should be of the same size if pos-
sible and aligned to a common row or column.
However, it can be reasonable to align sub-
activities in a stair case pattern to facilitate the
connecting of relations as shown in the exam-
ple. It is most important to keep the number of
relations low. Furthermore, avoid long relation
arcs which change their direction several times.
Intersections of arcs or arcs which run parallel

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 15 -

can also be confusing. This can be achieved by using connectors, by
aggregating elements into a super-element (which does not need to
have a name), or by making basic elements geometrically so large
that the relations can be short. The example with the stair case pat-
tern can also be considered as a recommendable template: roles on
top, activities in the middle, tools and computers are at the bottom,
and interface entities between the technical system and the activities.
The standard (good case) sequence of activities should be displayed
with a left-to-right order.

Checking the
contract;
Relevant aspects:
{address, calcula-
tion, ()}

Checking

Contract

adress

calculation

versus

The same aspects of a diagram are sometimes described
by textual attributes or by an extended name of a basic
element, while other diagram fragments use more basic-
elements for the same description. The strategy of choos-
ing between these options is to use basic-elements in-
stead of textual attributes if they might have to be con-
nected with other elements by relations in the further de-
sign. Elements which are not connected with any relation
can be transformed into text. This strategy is related to the
question about the appropriate degree of granularity
which should be chosen: it is reasonable to introduce
those sub-elements which are needed to understand the
character of the super-element, which have to be con-
nected with relations or which cannot be derived from the
context.

There are two - but closely related - basic concepts of
incomplete specification. The crossing relation is always a means to
indicate that not the whole element is used, modified, following, influ-
encing, carrying out etc., but (mostly) only a part of it. We gave ex-
amples above about the advantage of this construction, especially for
activities as explained with the voting example or with the sequence
of programming and testing.
The other concept of incompleteness is represented by the mouse
holes (or parentheses in the case of attributes). Whether a mouse
hole is added or not to a basic element or not is triggered by the fol-
lowing question: “Is the set of the depicted sub-elements complete or
are there sub-elements imaginable which have to be added to the
basic-element to make its specification complete?” If the set of sub-
elements is imaginably incomplete, they should be completed or a
mouse hole should be added in the following cases:
• It is clear from the context which sub-elements are omitted
• It is not interesting to add further sub-elements for the purpose of

the model
• Further specification should not be anticipated but be left to those

ones who once will be in charge with instantiating the diagram dur-
ing their work

• The specified element is a subject of dynamic change and it is the-
refore not reasonable to add further specification

• We do not know enough at the given moment to complete the set of
sub-element – but this can be the case after further research (this is
to be indicated by the three dots)

• There might be doubts about the correctness of the chosen set of
specified sub-elements – this should be indicated with a “?”.

Those parts of the diagram which are not needed to program or to
formally regulate a solution should make extensive use of being in-
complete.

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 16 -

drafting a
contract

Checking
the value x

Checking
the contract

Value > 5000

offering
the contract

Clerk [1] Clerk [2]

Workflow system

drafting a
contract x

Checking
the contract

offering
the contract

Clerk [1] Clerk [2]

 A specific relevance has the
usage of incompleteness to
express freedom of decision
as shown by the example deal-
ing with checking a con-
tract. In the first case it is
decided by a workflow sys-
tem, whether a second clerk
(the numbers in brackets indi-
cate that different persons
should instantiate the roles) will
check the contract. In the
second case, it is decided by
clerk [1], whether a checking of
the contract is reasonable or
not. The condition is left un-
specified to express that it is ad-
hoc specified by clerk [1].
Actually the depicting of the
empty condition is not needed,
since it is clear by the contest of the diagram elements how the deci-
sion is made. However, depicting the empty hexagon emphasizes the
message, that it is willingly decided to leave the decision with the
clerk [1].

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 17 -

9 References
Herrmann, Th. (1997): Communicable Models for Cooperative Proc-
esses. In: Salvendy, G. et al. (eds.) (1997): Design of Computing Sys-
tems: Cognitive Considerations. Amsterdam et al. pp 285 -288.
Herrmann, Th.; Loser, K.-U.: (1999): Vagueness in models of socio-
technical systems. In: Behaviour and Information Technology. Vol. 18,
no.5, pp 313-323.
Herrmann, Th.; Hoffmann, M.; Loser; K.-U. (1999): Modellieren mit
SeeMe - Alternativen wider die Trockenlegung feuchter Informations-
landschaften. In: Desel, J.; Pohl, K.; Schürr, A. (eds.): Model-
lierung’99. Stuttgart: Teubner. pp 59-74.
Herrmann, Th., Hoffmann, M., Loser, K.-U., Moysich, K. (2000): Se-
mistructured models are surprisingly useful for user-centered design.
In: Dieng, R.; Giboin, A., Karsenty, L., De Michelis, G. (Hrsg.): Design-
ing cooperative systems. Amsterdam: IOC press. pp 159 –174.
Herrmann, Th. (1999): Flexible Präsentation von Prozeßmodellen. In:
Ahrend, E.; Eberleh, E.; K. Pitschke (eds.): Software-Ergonomie '99.
Stuttgart: Teubner. pp 123 - 136.
Kienle, A., Herrmann, T. (2003): Integration of Communication, Coor-
dination and Learning Material – a Guide for the Functionality of Col-
laborative Learning Environments. In: Proceedings of HICSS-36.
Herrmann, Th.; Kunau, G.; Loser, K.-U.; Hoffmann, M. (2004a): A
Modeling Method for the Development of Groupware Applications as
Socio-Technical Systems. In: Behaviour and Information Technology.
Vol. 23, Nr.2. S. 119 – 135.
Herrmann, Th. Kunau, G.; Loser, K.-U.; Menold, N.; (2004b): Socio-
technical Walkthrough: Designing Technology along Work Processes.
In: Clement, A.; de Cindio, F.; Oostveen, A.-M.; Schuler, D.; van den
Besselar,P.: PDC 2004 Proceedings. Artful Integration. Interweaving
Media, Materials and Practices. pp 132-142.
Loser, Kai-Uwe (2005): Unterstützung der Adoption kommerzieller
Standardsoftware durch Diagramme. [http: //hdl.handle.net/2003/ 21659]
Kunau, Gabriele (2006): Facilitating computer supported cooperative
work with socio-technical self-descriptions.
[http://hdl.handle.net/2003/22226]
Stefanides, Marek (2006): „Gestaltung kooperativer, technisch-
unterstützter Arbeitsprozesse in einer Röntgenpraxis“. Diplomarbeit,
Universität Dortmund

Thomas Herrmann: SeeMe in a nutshell (November 2006) - 18 -

